## Artificial Intelligence Powered Precision Radiotherapy

**Nikos Paragios** 

**Distinguished Professor, Mathematics** 





#### Personnel TODAY : 75

## THERAPANACEA



#### **CE** TheraPanacea's impact / clinical vision We are CE/EDA compliant and a class II



Z

We are CE/FDA compliant and a class II.B medical device company according to the new EU Medical Device
Regulation (MDR) certified to deploy medical devices with medium to high risk.

#### TheraPanacea's excellence in innovation

We harness state of the art research in computerscience, applied mathematics, artificial intelligence and multi-omics approaches to improve treatment implementation & prognosis

#### TheraPanacea's Clinical & Academic Network



Fasten & ease access to clinical expertise and data necessary to build novel and efficient digital biomarkers through our oncology specialized network of clinical partners

**5** continents

Top 10 worldwide

oncology care centers

**#1** in mathematics,

**#15** in all disciplines

Perelman

School of Medicine

BRAINLAB

**GUSTAVE** 

universite

PARIS-SACLAY

CHARITÉ

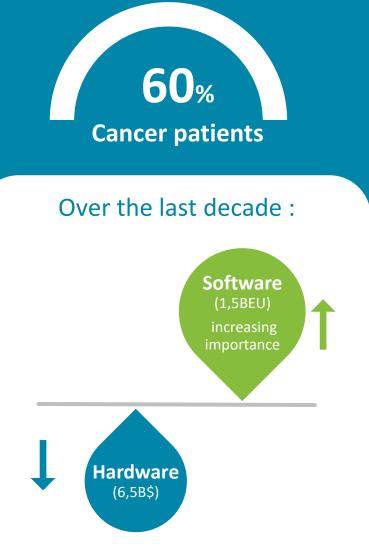
Cleveland Clinic VUmc (1)

150+ clinical sites **250,000+** targeted oncology patients in 2024

## **Cancer :** Challenge of 21st Century








**Linear Accelerator** 

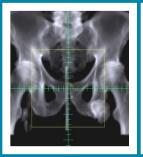
Treatment Planning Software

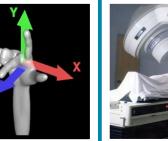
## **Radiation therapy :**








#### Imaging + Physics + Optimization + Simulation






Treatment

#### Imaging + Positioning + Radiation







## **Radiation therapy today**



Time Tedious, time-consuming manual steps



**Expert bias** Quality of treatment heavily depends on expertise

#### **Anatomy's evolution**

Lack of handling anatomy's evolution and physiological changes

#### One target equal to **One dose**

Inability to account for local tumor proliferation

#### **Exploiting outcomes?**

Inability to connect treatment choices with outcomes

## Facts



#### Human expertise

3-12 h human expertise required per patient in preparation leading to sub-optimal workflows

#### **Unequal access to** treatment



Same patient treated by 2 different centers will see different clinical outcomes



#### Increased toxicity and **Side effects**

Adjusting treatment through delivery could allow decreased margins, personalization and eliminate side effects



## **Al-powered Radiatiotherapy**





Δ

## We it brings in



#### Time-saving

Human expertise needed from hours to minutes

#### Advanced solutions

Automated alerts and simple adaptation of treatment plans

#### **Optimal clinical outcomes**

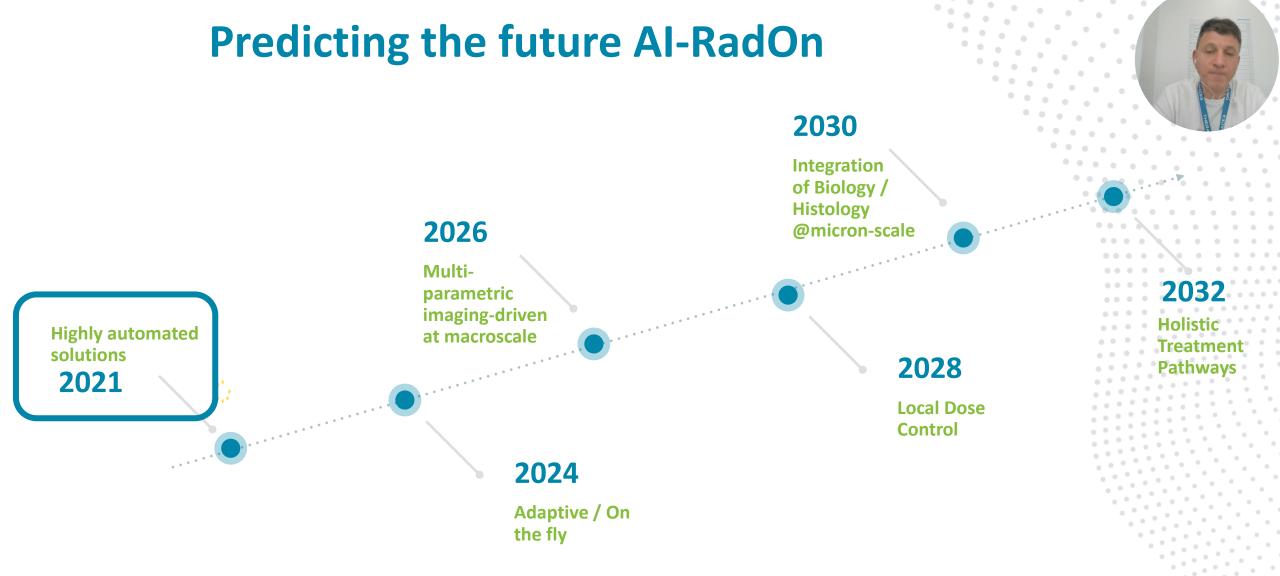
Connecting the dots, understanding the outcomes, feeding them back to the patient level

### Benefits



Treatment efficiency improved




Less side effects



Automation & Standardization



Reduced healthcare expenses

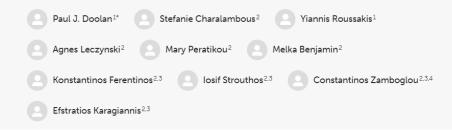




## **Segmentation of Organs at Risk**

| ART-Plan            |              |                                    |                  |     |         |                   |   |      |    | ACCUEIL |                             | SMARTFUSE    | ADMINISTRATION  | À PROPOS      |           |
|---------------------|--------------|------------------------------------|------------------|-----|---------|-------------------|---|------|----|---------|-----------------------------|--------------|-----------------|---------------|-----------|
| ÉGIONS D'INTÉRÊT    | 0            | FONCTIONS AUTOMATIQUES             | OUTILS D'ÉDITION |     |         | ICHAGE            |   |      |    |         |                             |              |                 |               |           |
| + = = •             | 0 🙆 💿        | n 🖍 🕺 🛣                            |                  | © [ |         | ШП                | ] |      |    |         |                             |              |                 |               |           |
| rgane (41)          | 0            | AXIAL                              |                  |     | CT-CRAN | IE - 03 OCT. 2018 |   |      |    |         | SAGITTAL                    |              | CT - CRANE -0   | 3 OCT. 2018   |           |
| Canal_Medullaire    | 2 @          |                                    |                  |     |         | A                 |   |      | e, | ۵ 💠 🖸   | 0                           |              | S               |               | ର୍ ବ୍ 🔂 🕄 |
| Cavite_Buccale      | 2 @          | 11                                 |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| Cervelet            | 2 👁          |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| Chiasma             | 2 👁          |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 | _             |           |
| Cochlee_D           | 2 👁          |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| Cochlee_G           | 2 👁          |                                    |                  |     |         |                   |   |      |    |         | A                           |              |                 |               |           |
| Cristallin_D        | 2 👁          |                                    |                  |     |         |                   |   |      |    |         |                             | Ć,           |                 | 1             |           |
| Cristallin_G        | 2 👁          |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| D_Articul_Temporo_N | Mandibul 🧷 👁 |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| D_Gangl_Jugul_Moy_  | , ∠∞         |                                    |                  |     |         |                   |   |      |    |         | Image prim<br>Coupe : 257   | ire:<br>/512 |                 | (cm)          |           |
| D_Gangl_Jugul_Sup_I | ı ∠∞         |                                    |                  |     |         |                   |   |      |    |         | Intensité :-<br>Contraste : | 20.00/400.00 | 0 2 4 6 8 10 12 | 4 16 18 20 22 |           |
| D_Gangl_Retrophary  | ng_VIIA ∠ ©  | D                                  |                  |     |         |                   |   |      |    |         | G CORONAL                   |              | CT - CRANE - C  | 3 OCT. 2018   |           |
| D_Gangl_SousMax_IE  |              |                                    |                  |     |         |                   |   |      |    |         |                             |              | S               |               | ର୍ଷ୍ 🔶 🖸  |
| Encephale           |              |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| G_Articul_Temporo_N | Mandibul 🖉 🍩 |                                    |                  |     |         |                   |   |      |    |         | 11—                         |              |                 |               |           |
| G_Gangl_Jugul_Moy_  | ∠ @          |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| G_Gangl_Jugul_Sup_I |              |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| G_Gangl_Retrophary  | ng_VIIA ∠ ©  |                                    |                  |     |         |                   |   |      |    |         | D                           |              |                 |               |           |
| G_Gangl_SousMax_IE  |              |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| G_Gangl_Triang_Post |              |                                    |                  |     |         |                   |   |      |    |         |                             |              |                 |               |           |
| Glande_SousMax_D    |              |                                    |                  |     |         |                   |   |      |    |         |                             |              | 1.              |               |           |
| Glande_SousMax_G    |              | Image primaire :<br>Coupe : 87/103 |                  |     | 2 3 4 5 |                   |   | (cm) |    | 1       | Coupe : 257                 | ire:<br>/512 |                 |               |           |

## **Al-segmentation vs Al-segmentation**




**ORIGINAL RESEARCH article** 

Front. Oncol., 04 August 2023 Sec. Radiation Oncology Volume 13 - 2023 | https://doi.org/10.3389/fonc.2023.1213068 This article is part of the Research Topic Prospective Utilization and Clinical Applications of Artificial Intelligence and Data-driven Automation for Radiotherapy

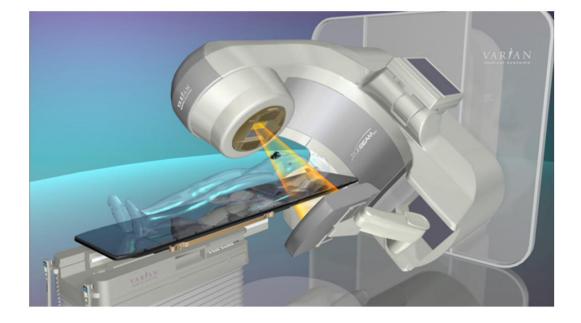
View all 7 articles >

A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy



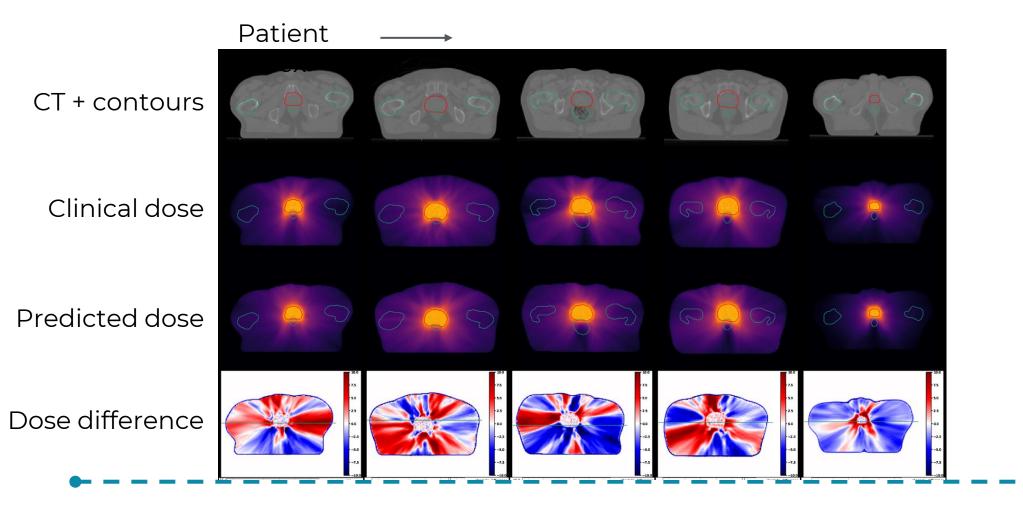
@ Doolan et al, 2023\*

## Saving time over manual contouring (20 cases per indiction)

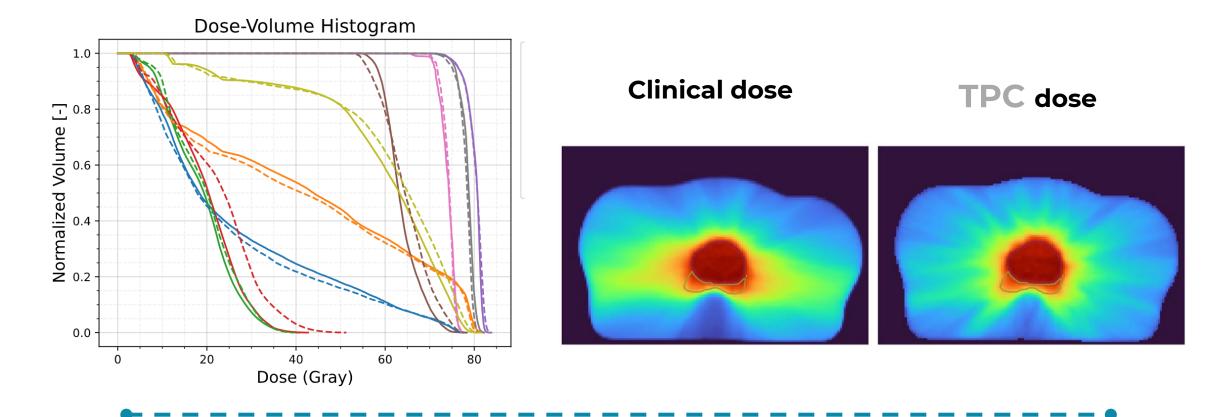

|     |                                       |                        | Ν     | lean time  |                        |            |              |                      |             |
|-----|---------------------------------------|------------------------|-------|------------|------------------------|------------|--------------|----------------------|-------------|
|     |                                       |                        | Ν     | fanual     | Correction             | Correction | Correction   | Correction           | Correction  |
|     |                                       |                        | Iı    | nstitution | Mirada                 | MVision    | Radformation | RayStation           | Therapanace |
|     | Breast                                | No. structures         |       | 10         | 8                      | 8          | 10           | 5                    | 10          |
|     |                                       | Time for 10 structures | [min] | 22         | 7.5                    | 1.6        | 7.8          | 3.1                  | 1.4         |
|     |                                       | Saving [min/%]         |       |            | 14.5/66.0%             | 20.4/92.8% | 14.2/64.4%   | 18.9/86.0%           | 20.6/93.7%  |
|     | Head and neck                         | No. structures         |       | 19         | 27                     | 27         | 27           | 26                   | 30          |
|     |                                       | Time for 19 structures | [min] | 97         | 8.2                    | 9.8        | 22.7         | 4.6                  | 4.4         |
|     |                                       | Saving [min/%]         |       |            | 88.8/91.6%             | 87.2/89.9% | 74.3/76.6%   | 92.4/95.3%           | 92.6/95.4%  |
|     | Lung                                  | No. structures         |       | 6          | 6                      | 6          | 6            | 5                    | 6           |
|     |                                       | Time for 6 structures  | [min] | 26         | 5.2                    | 1.2        | 6.0          | 1.5                  | 0.4         |
|     |                                       | Saving [min/%]         |       |            | 20.8/80.1%             | 24.9/95.6% | 20.0/76.8%   | 24.5/94.4%           | 25.6/98.4%  |
|     | Prostate                              | No. structures         |       | 10         | 8                      | 9          | 9            | 5                    | 10          |
|     |                                       | Time for 10 structures | [min] | 42         | 7.4                    | 0.3        | 4.3          | 5.2                  | 0.1         |
|     |                                       | Saving [min/%]         |       |            | 34.6/82.3%             | 41.7/99.3% | 37.7/89.7%   | 36.8/87.6%           | 41.9/99.7%  |
|     |                                       |                        |       |            |                        |            |              |                      |             |
|     |                                       | Μ                      | anual |            | ADA Maring Cancer Care | VISIO      | N RAD R      | aySearch Aboratories |             |
| TII | TIME SAVINGS (%) 09                   |                        |       |            | 84,8                   | 94,6       | 78,1         | 92,2                 | 96,7        |
|     | CONTOURING 18<br>ORRECTION TIME (MIN) |                        |       |            | 28,3                   | 12,9       | 40,8         | 14,4                 | 6,3         |

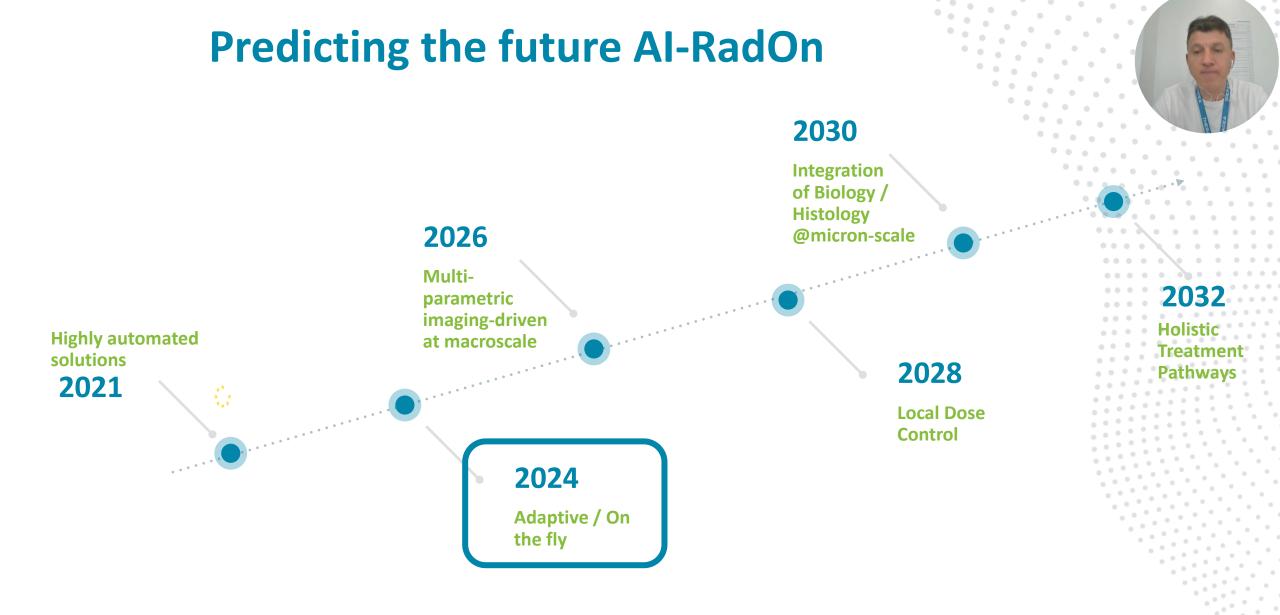
#### **THERAPANACEA**




### How about ? automatic planning?

- ~3M new cancer cases per year in Europe alone
- ~50% of patients receive radiotherapy
- Side effects are serious
- High variance between
   practices
- Planning = clinical bottleneck




### **Results: Deep-learned dose predictions**



### **Results: TPC-optimized plans comparable to clinically-approved plans**



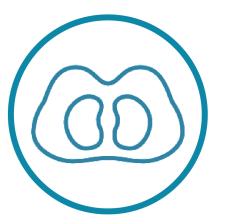






# ART-Plan<sup>™</sup> AdaptBox

Al-powered Decision Making for Re-Planning




#### ART-Plan<sup>™</sup> AdaptBox

## Problem

"Based on previous studies, approximately 21% to 65% of all patients undergoing head and neck cancer radiotherapy treatment may benefit dosimetrically from adaptive radiotherapy."\*

As patient's anatomy changes throughout the treatment process, the initial treatment plan may no longer reflect the actual dose delivered to the target and OARs. Repeated imaging such as CBCT can facilitate adaptation decision.



CBCT Poor Image Quality

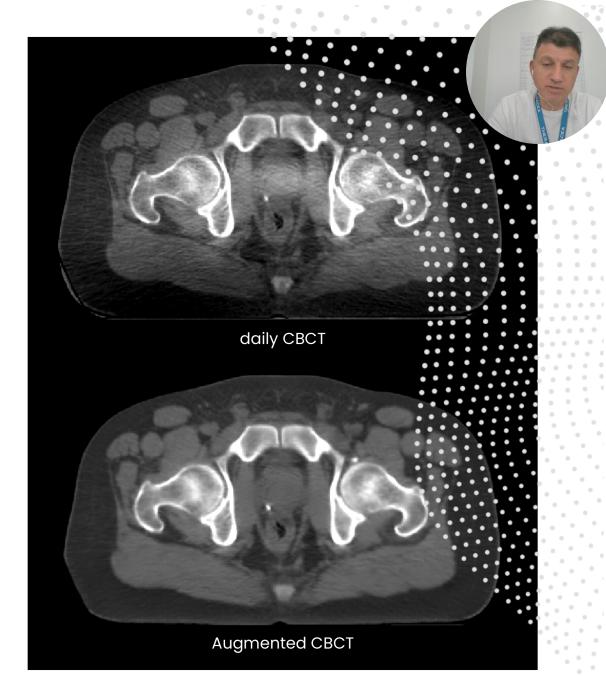
#### Some barriers still prevent their further clinical use:



CBCT Limited Field of View



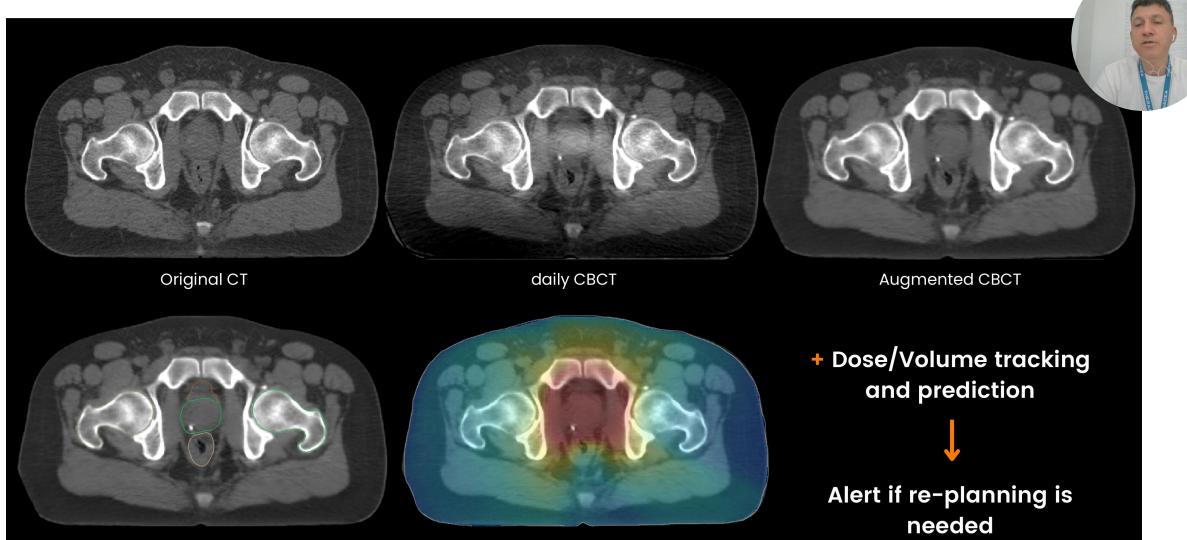
No possible dose map generation


\*Surucu, Murat et al. "Adaptive Radiotherapy for Head and Neck Cancer." Technology in cancer research & treatment vol. 16,2 (2017): 218-223.

#### ART-Plan<sup>™</sup> AdaptBox

## Solution

Generation of AI-based high resolution CBCT with augmented field of view for daily dose evaluation and robust patient positioning.


- Enhanced image quality
- Augmented Field of View
- Useful for effective full scale dose simulation
- Robust patient positioning
- Direct AI-powered delineations of OARs





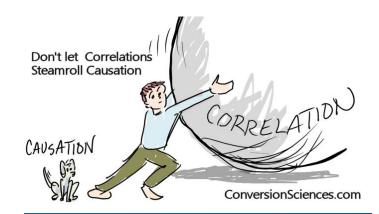
### **Synthetic Cone Beam CT**





Auto-delineations on augmented CBCT

Generation of Dose Map


ART-Plan<sup>™</sup> AdaptBox

## **Challenges & Pitfalls of AI-driven precision medicin**

### Standardisation



#### **Correlation ? Causality**



Too many variables to interpret

 $\rightarrow$  Random Correlations

#### **Bias? Generalization**



Unrepresentative training and testing sets

 $\rightarrow$  Methods that do not generalize



5200+250,000+continentsclinical sitesoncology patients in<br/>2024

Nikos Paragios, Professor : n.paragios@therapanacea.com